Infrared Imaging 1941-2001

Ted Raab

Mid-infrared Rhizosphere Atlas (MIRA)

Carnegie Institute of Washington
Stanford CA 94503

What Is the Infrared?

- Near IR (<1 3 μm); Remote sensing or planetary science applications
- Mid IR (3 20 μm); Chemistry/biology
- **Far IR** (20 200+ μm); Physics/biology?

Methods for IR Detection

- Photographic film ("color IR")
- PMT's
- Solid-state devices
- Focal-plane arrays

Thermal Emission Spectrometer

Most successful of the interplanetary imagers, currently in orbit around Mars (Mars Global Surveyor).

Has returned about 10⁹ hi rez images of ices and surface minerals

Planetary materials in the mid IR

The Infrared Microscope

- Invented ~ 1986
- Optics limited the spatial resolution
- Low radiation thru small apertures gave poor spectra

Synchrotrons As a Source of IR

Comparison of IR spot sizes

Polysaccharide spectra

Mechanisms of IR contrast

- Mass changes
- Geometry
- Vibrational coupling
- Bond order
- Electronic effects

Isotope Effects on IR Spectra

D5-pyridine vs. H5

Orientation of Cells and Associated Polymers

- Several hundred µm of root cells from an intact legume root
- Oriented along the growth axis (upper left to lower right)

Oriented deposition of Polysaccharides

From: McCann, Wells & Roberts J Cell Sci 96,323

Linear Structural Polymers

- Cellulose is a β –(1,4) glucose polymer
- Laid down in long parallel strands
- Some IR features show strong polarization

Amorphous/branched Polymers

- Starch is an α-(1,4) glucose polymer, often branched
- One of the principal energy storage forms for plant growth

Compare Biological anomers

cellulose

Connecting Polymers With Biology

- Need to characterize
 the chemical
 composition of the cell
 walls in different
 tissue types
- Mutants lacking one of the Csl-x genes are compared by IR

The cellulose synthase gene family

Comparison of Arabidopsis leaves

Glucomannans As Seed Builders

Comparing root fingerprints

Experimental design

• Thin-rhizobox geometry for growing plants in sand/silt culture $(2\pi d / \lambda > 10)$

• Spectra from IR microscope acquired through IR-transmissive ZnSe windows.

• Perturb the plant-soil system simply ...

IR rhizobox

Polycarbonate box with soil and a ZnSe IR transparent window over root zone.

Conclusions

- Rhizosphere chemistry in our legume system has significantly different chemistry over 50-75 microns
- Low-phosphorus increases the exudation of protein(s) into the soil solution compared with nutrient-sufficient plants
- SR IR is sensitive to altered root polysaccharide chemistry
- SR IR spectromicroscopy complements soft X-ray and ¹H-MRI, providing better chemical information with spatial localization.

Acknowledgements

- Dr. Michael C. Martin,
 ALS Division
- Dr. Wayne R.McKinney, ALSDivision
- Dr. Chris R. Somerville,
 Carnegie Institution,
 Stanford

